1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 package org.orekit.propagation.semianalytical.dsst.utilities.hansen;
18
19 import org.hipparchus.analysis.polynomials.PolynomialFunction;
20 import org.hipparchus.util.FastMath;
21
22
23
24
25
26
27
28
29
30
31
32
33 public class HansenZonalLinear {
34
35
36 private static final int SLICE = 10;
37
38
39
40
41
42 private PolynomialFunction[][] mpvec;
43
44
45 private PolynomialFunction[][] mpvecDeriv;
46
47
48 private double[][] hansenRoot;
49
50
51 private double[][] hansenDerivRoot;
52
53
54 private int Nmin;
55
56
57
58 private int N0;
59
60
61 private int s;
62
63
64
65
66
67 private int offset;
68
69
70 private int numSlices;
71
72
73 private double twots;
74
75
76 private int twosp1;
77
78
79 private int twos;
80
81
82 private double twosp1otwots;
83
84
85
86
87
88
89
90 public HansenZonalLinear(final int nMax, final int s) {
91
92
93 this.offset = nMax + 1;
94 this.Nmin = -nMax - 1;
95 N0 = -(s + 2);
96 this.s = s;
97 this.twots = FastMath.pow(2., s);
98 this.twos = 2 * s;
99 this.twosp1 = this.twos + 1;
100 this.twosp1otwots = (double) this.twosp1 / this.twots;
101
102
103 final int size = nMax - s - 1;
104 mpvec = new PolynomialFunction[size][];
105 mpvecDeriv = new PolynomialFunction[size][];
106
107 this.numSlices = FastMath.max((int) FastMath.ceil(((double) size) / SLICE), 1);
108 hansenRoot = new double[numSlices][2];
109 hansenDerivRoot = new double[numSlices][2];
110
111
112 generatePolynomials();
113
114 }
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131 private PolynomialFunction a(final int mnm1) {
132
133 final double d1 = (mnm1 + 2) * (2 * mnm1 + 5);
134 final double d2 = (mnm1 + 2 - s) * (mnm1 + 2 + s);
135 return new PolynomialFunction(new double[] {
136 0.0, 0.0, d1 / d2
137 });
138 }
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155 private PolynomialFunction b(final int mnm1) {
156
157 final double d1 = (mnm1 + 2) * (mnm1 + 3);
158 final double d2 = (mnm1 + 2 - s) * (mnm1 + 2 + s);
159 return new PolynomialFunction(new double[] {
160 0.0, 0.0, -d1 / d2
161 });
162 }
163
164
165
166
167
168
169
170
171 private void generatePolynomials() {
172
173 int sliceCounter = 0;
174 int index;
175
176
177
178
179 PolynomialFunctionMatrix A = HansenUtilities.buildIdentityMatrix2();
180 PolynomialFunctionMatrix D = HansenUtilities.buildZeroMatrix2();
181 PolynomialFunctionMatrix E = HansenUtilities.buildIdentityMatrix2();
182
183
184
185 final PolynomialFunctionMatrix a = HansenUtilities.buildZeroMatrix2();
186 a.setElem(0, 1, HansenUtilities.ONE);
187
188
189 final PolynomialFunctionMatrix B = HansenUtilities.buildZeroMatrix2();
190
191 B.setElem(1, 1, new PolynomialFunction(new double[] {
192 2.0
193 }));
194
195 for (int i = N0 - 1; i > Nmin - 1; i--) {
196 index = i + offset;
197
198
199 a.setMatrixLine(1, new PolynomialFunction[] {
200 b(i), a(i)
201 });
202
203
204 A = A.multiply(a);
205
206 mpvec[index] = A.getMatrixLine(1);
207
208 D = D.multiply(a);
209 E = E.multiply(a);
210 D = D.add(E.multiply(B));
211
212
213
214 mpvecDeriv[index] = D.getMatrixLine(1);
215
216 if (++sliceCounter % SLICE == 0) {
217
218
219
220 A = HansenUtilities.buildIdentityMatrix2();
221 D = HansenUtilities.buildZeroMatrix2();
222 E = HansenUtilities.buildIdentityMatrix2();
223 }
224
225 }
226 }
227
228
229
230
231
232
233 public void computeInitValues(final double chi) {
234
235
236 hansenRoot[0][0] = 0;
237 hansenRoot[0][1] = FastMath.pow(chi, this.twosp1) / this.twots;
238 hansenDerivRoot[0][0] = 0;
239 hansenDerivRoot[0][1] = this.twosp1otwots * FastMath.pow(chi, this.twos);
240
241 final int st = -s - 1;
242 for (int i = 1; i < numSlices; i++) {
243 for (int j = 0; j < 2; j++) {
244
245 final PolynomialFunction[] mv = mpvec[st - (i * SLICE) - j + offset];
246 final PolynomialFunction[] sv = mpvecDeriv[st - (i * SLICE) - j + offset];
247
248
249 hansenDerivRoot[i][j] = mv[1].value(chi) * hansenDerivRoot[i - 1][1] +
250 mv[0].value(chi) * hansenDerivRoot[i - 1][0] +
251 (sv[1].value(chi) * hansenRoot[i - 1][1] +
252 sv[0].value(chi) * hansenRoot[i - 1][0]
253 ) / chi;
254 hansenRoot[i][j] = mv[1].value(chi) * hansenRoot[i - 1][1] +
255 mv[0].value(chi) * hansenRoot[i - 1][0];
256
257 }
258
259 }
260 }
261
262
263
264
265
266
267
268
269
270
271 public double getValue(final int mnm1, final double chi) {
272
273
274 final int n = -mnm1 - 1;
275
276
277 int sliceNo = (n - s) / SLICE;
278 if (sliceNo < numSlices) {
279
280 final int indexInSlice = (n - s) % SLICE;
281
282
283 if (indexInSlice <= 1) {
284 return hansenRoot[sliceNo][indexInSlice];
285 }
286 } else {
287
288
289 sliceNo--;
290 }
291
292
293 final PolynomialFunction[] v = mpvec[mnm1 + offset];
294 double ret = v[1].value(chi) * hansenRoot[sliceNo][1];
295 if (hansenRoot[sliceNo][0] != 0) {
296 ret += v[0].value(chi) * hansenRoot[sliceNo][0];
297 }
298 return ret;
299 }
300
301
302
303
304
305
306
307
308
309
310 public double getDerivative(final int mnm1, final double chi) {
311
312
313 final int n = -mnm1 - 1;
314
315
316 int sliceNo = (n - s) / SLICE;
317 if (sliceNo < numSlices) {
318
319 final int indexInSlice = (n - s) % SLICE;
320
321
322 if (indexInSlice <= 1) {
323 return hansenDerivRoot[sliceNo][indexInSlice];
324 }
325 } else {
326
327
328 sliceNo--;
329 }
330
331
332 final PolynomialFunction[] v = mpvec[mnm1 + offset];
333 double ret = v[1].value(chi) * hansenDerivRoot[sliceNo][1];
334 if (hansenDerivRoot[sliceNo][0] != 0) {
335 ret += v[0].value(chi) * hansenDerivRoot[sliceNo][0];
336 }
337
338
339 final PolynomialFunction[] v1 = mpvecDeriv[mnm1 + offset];
340 double hret = v1[1].value(chi) * hansenRoot[sliceNo][1];
341 if (hansenRoot[sliceNo][0] != 0) {
342 hret += v1[0].value(chi) * hansenRoot[sliceNo][0];
343 }
344 ret += hret / chi;
345
346 return ret;
347
348 }
349
350 }