1   /* Copyright 2002-2016 CS Systèmes d'Information
2    * Licensed to CS Systèmes d'Information (CS) under one or more
3    * contributor license agreements.  See the NOTICE file distributed with
4    * this work for additional information regarding copyright ownership.
5    * CS licenses this file to You under the Apache License, Version 2.0
6    * (the "License"); you may not use this file except in compliance with
7    * the License.  You may obtain a copy of the License at
8    *
9    *   http://www.apache.org/licenses/LICENSE-2.0
10   *
11   * Unless required by applicable law or agreed to in writing, software
12   * distributed under the License is distributed on an "AS IS" BASIS,
13   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14   * See the License for the specific language governing permissions and
15   * limitations under the License.
16   */
17  package org.orekit.propagation.semianalytical.dsst.utilities.hansen;
18  
19  import org.hipparchus.analysis.polynomials.PolynomialFunction;
20  import org.hipparchus.util.FastMath;
21  
22  /**
23   * Hansen coefficients K(t,n,s) for t=0 and n < 0.
24   * <p>
25   *Implements Collins 4-242 or echivalently, Danielson 2.7.3-(6) for Hansen Coefficients and
26   * Collins 4-245 or Danielson 3.1-(7) for derivatives. The recursions are transformed into
27   * composition of linear transformations to obtain the associated polynomials
28   * for coefficients and their derivatives - see Petre's paper
29   *
30   * @author Petre Bazavan
31   * @author Lucian Barbulescu
32   */
33  public class HansenZonalLinear {
34  
35      /** The number of coefficients that will be computed with a set of roots. */
36      private static final int SLICE = 10;
37  
38      /**
39       * The first vector of polynomials associated to Hansen coefficients and
40       * derivatives.
41       */
42      private PolynomialFunction[][] mpvec;
43  
44      /** The second vector of polynomials associated only to derivatives. */
45      private PolynomialFunction[][] mpvecDeriv;
46  
47      /** The Hansen coefficients used as roots. */
48      private double[][] hansenRoot;
49  
50      /** The derivatives of the Hansen coefficients used as roots. */
51      private double[][] hansenDerivRoot;
52  
53      /** The minimum value for the order. */
54      private int Nmin;
55  
56  
57      /** The index of the initial condition, Petre's paper. */
58      private int N0;
59  
60      /** The s coefficient. */
61      private int s;
62  
63      /**
64       * The offset used to identify the polynomial that corresponds to a negative
65       * value of n in the internal array that starts at 0.
66       */
67      private int offset;
68  
69      /** The number of slices needed to compute the coefficients. */
70      private int numSlices;
71  
72      /** 2<sup>s</sup>. */
73      private double twots;
74  
75      /** 2*s+1. */
76      private int twosp1;
77  
78      /** 2*s. */
79      private int twos;
80  
81      /** (2*s+1) / 2<sup>s</sup>. */
82      private double twosp1otwots;
83  
84      /**
85       * Constructor.
86       *
87       * @param nMax the maximum (absolute) value of n coefficient
88       * @param s s coefficient
89       */
90      public HansenZonalLinear(final int nMax, final int s) {
91  
92          //Initialize fields
93          this.offset = nMax + 1;
94          this.Nmin = -nMax - 1;
95          N0 = -(s + 2);
96          this.s = s;
97          this.twots = FastMath.pow(2., s);
98          this.twos = 2 * s;
99          this.twosp1 = this.twos + 1;
100         this.twosp1otwots = (double) this.twosp1 / this.twots;
101 
102         // prepare structures for stored data
103         final int size = nMax - s - 1;
104         mpvec      = new PolynomialFunction[size][];
105         mpvecDeriv = new PolynomialFunction[size][];
106 
107         this.numSlices  = FastMath.max((int) FastMath.ceil(((double) size) / SLICE), 1);
108         hansenRoot      = new double[numSlices][2];
109         hansenDerivRoot = new double[numSlices][2];
110 
111         // Prepare the data base of associated polynomials
112         generatePolynomials();
113 
114     }
115 
116     /**
117      * Compute polynomial coefficient a.
118      *
119      *  <p>
120      *  It is used to generate the coefficient for K₀<sup>-n, s</sup> when computing K₀<sup>-n-1, s</sup>
121      *  and the coefficient for dK₀<sup>-n, s</sup> / de² when computing dK₀<sup>-n-1, s</sup> / de²
122      *  </p>
123      *
124      *  <p>
125      *  See Danielson 2.7.3-(6) and Collins 4-242 and 4-245
126      *  </p>
127      *
128      * @param mnm1 -n-1 value
129      * @return the polynomial
130      */
131     private PolynomialFunction a(final int mnm1) {
132         // from recurence Collins 4-242
133         final double d1 = (mnm1 + 2) * (2 * mnm1 + 5);
134         final double d2 = (mnm1 + 2 - s) * (mnm1 + 2 + s);
135         return new PolynomialFunction(new double[] {
136             0.0, 0.0, d1 / d2
137         });
138     }
139 
140     /**
141      * Compute polynomial coefficient b.
142      *
143      *  <p>
144      *  It is used to generate the coefficient for K₀<sup>-n+1, s</sup> when computing K₀<sup>-n-1, s</sup>
145      *  and the coefficient for dK₀<sup>-n+1, s</sup> / de² when computing dK₀<sup>-n-1, s</sup> / de²
146      *  </p>
147      *
148      *  <p>
149      *  See Danielson 2.7.3-(6) and Collins 4-242 and 4-245
150      *  </p>
151      *
152      * @param mnm1 -n-1 value
153      * @return the polynomial
154      */
155     private PolynomialFunction b(final int mnm1) {
156         // from recurence Collins 4-242
157         final double d1 = (mnm1 + 2) * (mnm1 + 3);
158         final double d2 = (mnm1 + 2 - s) * (mnm1 + 2 + s);
159         return new PolynomialFunction(new double[] {
160             0.0, 0.0, -d1 / d2
161         });
162     }
163 
164     /**
165      * Generate the polynomials needed in the linear transformation.
166      *
167      * <p>
168      * See Petre's paper
169      * </p>
170      */
171     private void generatePolynomials() {
172 
173         int sliceCounter = 0;
174         int index;
175 
176         // Initialisation of matrix for linear transformmations
177         // The final configuration of these matrix are obtained by composition
178         // of linear transformations
179         PolynomialFunctionMatrix A = HansenUtilities.buildIdentityMatrix2();
180         PolynomialFunctionMatrix D = HansenUtilities.buildZeroMatrix2();
181         PolynomialFunctionMatrix E = HansenUtilities.buildIdentityMatrix2();
182 
183         // generation of polynomials associated to Hansen coefficients and to
184         // their derivatives
185         final PolynomialFunctionMatrix a = HansenUtilities.buildZeroMatrix2();
186         a.setElem(0, 1, HansenUtilities.ONE);
187 
188         //The B matrix is constant.
189         final PolynomialFunctionMatrix B = HansenUtilities.buildZeroMatrix2();
190         // from Collins 4-245 and Petre's paper
191         B.setElem(1, 1, new PolynomialFunction(new double[] {
192             2.0
193         }));
194 
195         for (int i = N0 - 1; i > Nmin - 1; i--) {
196             index = i + offset;
197             // Matrix of the current linear transformation
198             // Petre's paper
199             a.setMatrixLine(1, new PolynomialFunction[] {
200                 b(i), a(i)
201             });
202             // composition of linear transformations
203             // see Petre's paper
204             A = A.multiply(a);
205             // store the polynomials for Hansen coefficients
206             mpvec[index] = A.getMatrixLine(1);
207 
208             D = D.multiply(a);
209             E = E.multiply(a);
210             D = D.add(E.multiply(B));
211 
212             // store the polynomials for Hansen coefficients from the expressions
213             // of derivatives
214             mpvecDeriv[index] = D.getMatrixLine(1);
215 
216             if (++sliceCounter % SLICE == 0) {
217                 // Re-Initialisation of matrix for linear transformmations
218                 // The final configuration of these matrix are obtained by composition
219                 // of linear transformations
220                 A = HansenUtilities.buildIdentityMatrix2();
221                 D = HansenUtilities.buildZeroMatrix2();
222                 E = HansenUtilities.buildIdentityMatrix2();
223             }
224 
225         }
226     }
227 
228     /**
229      * Compute the roots for the Hansen coefficients and their derivatives.
230      *
231      * @param chi 1 / sqrt(1 - e²)
232      */
233     public void computeInitValues(final double chi) {
234         // compute the values for n=s and n=s+1
235         // See Danielson 2.7.3-(6a,b)
236         hansenRoot[0][0] = 0;
237         hansenRoot[0][1] = FastMath.pow(chi, this.twosp1) / this.twots;
238         hansenDerivRoot[0][0] = 0;
239         hansenDerivRoot[0][1] = this.twosp1otwots * FastMath.pow(chi, this.twos);
240 
241         final int st = -s - 1;
242         for (int i = 1; i < numSlices; i++) {
243             for (int j = 0; j < 2; j++) {
244                 // Get the required polynomials
245                 final PolynomialFunction[] mv = mpvec[st - (i * SLICE) - j + offset];
246                 final PolynomialFunction[] sv = mpvecDeriv[st - (i * SLICE) - j + offset];
247 
248                 //Compute the root derivatives
249                 hansenDerivRoot[i][j] = mv[1].value(chi) * hansenDerivRoot[i - 1][1] +
250                                         mv[0].value(chi) * hansenDerivRoot[i - 1][0] +
251                                         (sv[1].value(chi) * hansenRoot[i - 1][1] +
252                                          sv[0].value(chi) * hansenRoot[i - 1][0]
253                                         ) / chi;
254                 hansenRoot[i][j] =     mv[1].value(chi) * hansenRoot[i - 1][1] +
255                                        mv[0].value(chi) * hansenRoot[i - 1][0];
256 
257             }
258 
259         }
260     }
261 
262     /**
263      * Get the K₀<sup>-n-1,s</sup> coefficient value.
264      *
265      * <p> The s value is given in the class constructor
266      *
267      * @param mnm1 (-n-1) coefficient
268      * @param chi The value of χ
269      * @return K₀<sup>-n-1,s</sup>
270      */
271     public double getValue(final int mnm1, final double chi) {
272 
273         //Compute n
274         final int n = -mnm1 - 1;
275 
276         //Compute the potential slice
277         int sliceNo = (n - s) / SLICE;
278         if (sliceNo < numSlices) {
279             //Compute the index within the slice
280             final int indexInSlice = (n - s) % SLICE;
281 
282             //Check if a root must be returned
283             if (indexInSlice <= 1) {
284                 return hansenRoot[sliceNo][indexInSlice];
285             }
286         } else {
287             //the value was a potential root for a slice, but that slice was not required
288             //Decrease the slice number
289             sliceNo--;
290         }
291 
292         // Danielson 2.7.3-(6c)/Collins 4-242 and Petre's paper
293         final PolynomialFunction[] v = mpvec[mnm1 + offset];
294         double ret = v[1].value(chi) * hansenRoot[sliceNo][1];
295         if (hansenRoot[sliceNo][0] != 0) {
296             ret += v[0].value(chi) * hansenRoot[sliceNo][0];
297         }
298         return  ret;
299     }
300 
301     /**
302      * Get the dK₀<sup>-n-1,s</sup> / d&Chi; coefficient derivative.
303      *
304      * <p> The s value is given in the class constructor.
305      *
306      * @param mnm1 (-n-1) coefficient
307      * @param chi The value of χ
308      * @return dK₀<sup>-n-1,s</sup> / d&Chi;
309      */
310     public double getDerivative(final int mnm1, final double chi) {
311 
312         //Compute n
313         final int n = -mnm1 - 1;
314 
315         //Compute the potential slice
316         int sliceNo = (n - s) / SLICE;
317         if (sliceNo < numSlices) {
318             //Compute the index within the slice
319             final int indexInSlice = (n - s) % SLICE;
320 
321             //Check if a root must be returned
322             if (indexInSlice <= 1) {
323                 return hansenDerivRoot[sliceNo][indexInSlice];
324             }
325         } else {
326             //the value was a potential root for a slice, but that slice was not required
327             //Decrease the slice number
328             sliceNo--;
329         }
330 
331         // Danielson 3.1-(7c) and Petre's paper
332         final PolynomialFunction[] v = mpvec[mnm1 + offset];
333         double ret = v[1].value(chi) * hansenDerivRoot[sliceNo][1];
334         if (hansenDerivRoot[sliceNo][0] != 0) {
335             ret += v[0].value(chi) * hansenDerivRoot[sliceNo][0];
336         }
337 
338         // Danielson 2.7.3-(6b)
339         final PolynomialFunction[] v1 = mpvecDeriv[mnm1 + offset];
340         double hret = v1[1].value(chi) * hansenRoot[sliceNo][1];
341         if (hansenRoot[sliceNo][0] != 0) {
342             hret += v1[0].value(chi) * hansenRoot[sliceNo][0];
343         }
344         ret += hret / chi;
345 
346         return ret;
347 
348     }
349 
350 }